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Abstract

One of the problems inherent in variance component estimation centers around

inadmissible estimates. Such estimates occur when there is more variability within

groups, relative to between groups. This paper suggests a Bayesian approach to resolve

inadmissibility by placing noninformative inverse-gamma priors on the variance

components, and compares Bayesian estimates with expected mean square and

maximum likelihood estimates. No noticeable differences among estimation type were

found for balanced data. However, Bayesian estimates tended to produce less biased

estimates for unbalanced data.
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Bayesian Variance Component Estimation Using the

Inverse-Gamma Class of Priors in a Nested Generalizability Design

Assessments are fallible instruments. That is, it is not possible to measure with

certainty the latent construct of interest. In educational settings, the construct of interest

typically is ability or achievement. Given the need to design highly accurate measurement

processes, researchers have given considerable attention to test reliability as a way of

estimating accuracy. The most commonly used reliability measures have severe

limitations. For example, Kuder and Richardson’s formulae 20 and 21 (1937) for

dichotomous items, as well as Cronbach’s coefficient alpha (1951) are based on classical

test theory (CTT; Lord & Novick, 1968; Crocker & Algina, 1986) assumptions. CTT posits

that variability of observed scores can be decomposed into two components, namely

persons, τ, and error, ε:

X = τ + ε (1)

Furthermore, KR-20 assumes constant inter-item correlations; KR-21 assumes the items

are of equal difficulty; and coefficient alpha is merely a lower bound on the unknown

reliability of the test.

Generalizability theory (GT; Cronbach, Rajaratnam, & Gleser, 1963; Cronbach,

Gleser, Nanda, & Rajaratnam, 1972; Brennan, 2001) extends the true-score model

posited by CTT. GT allows for multiple sources of variability. In educational applications,

such additional sources typically include variability due to items, raters, or occasions. For

example, one can express a design in which each of P persons responds to I unique

items from a universe of equivalent items (often referred to as an i : p, or nested, design)

as

Xi:p = µ + αp + εi:p . (2)

The fundamentals of GT are rooted in variance component models, which are most
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commonly found in analysis of variance. One typically estimates variance components by

equating ANOVA mean squares to their expectation. This method is known as EMS

estimation. Maximum likelihood (ML) estimation, generally considered to be a preferred

method, can be shown to be a function of EMS estimates (Searle, Casella, & McCulloch,

2006). Estimation of variance components is discussed below and in the Methods section.

Expected Mean Squares

The expected mean squares (EMS; Cronbach et al., 1972; Brennan, 2001) method

equates observed mean squares to their expectations. Table 1 summarizes the expected

mean squares for balanced data in the nested model, Equation (2).

Insert Table 1 here.

One sees that when MSp is less than MSi:p–that is, when there is more variability

within groups than there is between groups–the variance component for persons, σ̂2
p, is

negative. Such results are inadmissible and have serious implications, as addressed

below.

Inadmissible Variance Component Estimates

In any ANOVA design, mean squares–and, hence, variance components–are

random quantities. As such, there is always some chance of a negative variance

component estimate via classical estimation methods. Under normality assumptions,

these quantities are independent, and one can use the F-distribution to determine this

probability (Searle et al., 2006): F =
MSp
MSi:p

∼ Fνp
νe , where Fn

d refers to a random variable from

the F distribution with n numerator and d denominator degrees of freedom. It follows that

Pr(σ̂2
p < 0) = Pr

(
Fνp
νd < 1

)
. (3)

While Novick, Jackson, and Thayer (1971) described such a situation involving negative

variance components as “somewhat absurd,” Brennan (2001) pointed out that this
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happens either when the sample size is small or when there are a large number of effects,

either of which lead to large values of MSi:p.

Some argue, however, that the presence of negative variance components is

characteristic of a more fundamental problem. Frequentist statisticians agree that

negative variance component estimates are problematic, suggesting that the data do not

support the assumed model (Searle et al., 2006). The frequentist resolution of

inadmissability involves setting σ̂2
p = 0. This approach not only results in biased variance

component estimates (Brennan, 2001), but it underestimates the magnitude of the bias.

In addition, this method of truncated estimation has nothing to do with statistical

inference, (Scheffé, 1959).

Bayesian statisticians interpret the negative variance component problem

differently. They claim that a negative estimate arises because its likelihood function is

uninformative (i.e., flat; Hill, 1965; Tiao & Tan, 1965). Thus, it is not the case that σ2
p ≈ 0,

but, rather, that the proposed model does not sufficiently explain the data (Nelder, 1954;

Hill, 1965; Tiao & Tan, 1965). This explanation seems consistent with that of Brennan,

previously mentioned, regarding the number of facets and sample size.

As will be discussed in the Methods section, one can use a Bayesian approach to

incorporate prior knowledge (i.e., that variances are positive quantities), to obtain

admissible results. The goal in Bayesian analysis is to learn about the posterior

distribution, p(θ|data), which one determines based on combining the likelihood of the

data, L(data|θ), with the prior distribution, p(θ). If θ denotes a vector of parameters, then

the resulting posterior distribution,

p(θ|data) ∝ L(data|θ)p(θ), (4)

depends on the choice of prior distribution.

This paper includes priors from the inverse-gamma class. This class of priors holds
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many desirable qualities, two of which are presented here. First, this class of priors is

conditionally conjugate (Gelman, Carlin, Stern, & Rubin, 2003; Gelman, 2006). That is,

the prior and the resulting posterior distributions can both be expressed as

inverse-gamma distributions. Second, the inverse-chi-squared distribution, which is often

used to model variances, is a special case of the inverse-gamma family.

Method

Data Generation

Balanced Data. 1000 datasets were simulated for each of P = {25, 100, 1000}

persons crossed with I = {10, 50, 100} items, according the nested model outlined in

Equation (2):

Xi:p = µ + αp + εi:p , where

αp
i.i.d.
∼ N(0, σ2

p), and εi:p
i.i.d.
∼ N(0, σ2

i:p). (5)

For convenience, µ ≡ 0.

When total variance, σ2
X, is fixed (here σ2

X = 100), one can express σ2
p and σ2

i:p in

terms of test reliability, ρ (these results are proven in the Appendix):

σ2
p =

(IP − 1)

I(P − 1) + (IP + P − 2) 1−ρ
ρ

σ2
X , and (6)

σ2
i:p =

(IP − 1)
I(P − 1) ρ

1−ρ + (IP + P − 2)
σ2

X . (7)

Tables 2 through 4 display the generating variance components, as a function of I, P, ρ,

and σ2
X.

Insert Tables 2 through 4 here.

When the total variance is fixed, variance components also have an upper bound. A

fixed total variance consequently fixes the total sum of squares. These upper bounds
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correspond to test reliabilities of ρ = 0 for σ2
i:p and or ρ = 1 for σ2

p:

0 ≤ σ2
p ≤

PI − 1
I(P − 1)

σ2
X , and 0 ≤ σ2

i:p ≤
PI − 1

P(I − 1)
σ2

X . (8)

Unbalanced Data. For the study of unbalanced data, nine cases in which 100

unique, but equivalent, items will be divided among two, three, and four groups, crossed

with reliabilities inclusively between 0.1 and 0.9. Tables 5 through 7 outline the

proportions among which items will be apportioned and the resulting variance

components.

Insert Tables 5 through 7 here.

Because data are unbalanced, there is no uniform measure of test length. As a

proxy, a measure of effective test length (Brennan, 2001) will be used. Let ni:p denote the

number of items to which person p responds, and let nT denote the total number of items

(which, in this study, equals 100). Then,

Ieff =

P∑
p=1

n2
i:p

nT
. (9)

Parameter Estimation

EMS and Non-Truncated EMS Estimation.. Referring back to Table 1, one can

solve each EMS equation in terms of the variance components, and show that

σ̂2
p =


MSp−MSi:p

K MSp > MSi:p

0 otherwise

, and (10)

σ̂2
i:p = MSi:p. (11)

The corrected EMS estimate for variability due to persons will be made using Federer’s

(1968) non-truncated estimator for balanced data:

σ̃2
p = σ̂2

p +
MSi:p

I
e−αMSp , 0 < α ≤

1
MSi:p

, (12)
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where α = 1 minimizes the bias of σ̃2
p. Since 1

MSp
is likely to be less than one, in particular

for samples with low reliability, the choice for α will be min(α, 1).

Maximum Likelihood Estimation.. Under the nested model, Equation (2), the

likelihood of a single observation, Xi:p is proportional to

SSp

σ2
p

− P
2
 SSi:p

σ2
i:p + Iσ2

p

−
−[P(I−1)+1]

2

× e
− 1

2

 (Xi:p−µ)2

σ2
i:p+Iσ2

p
+

SSp
σ2

p
+

SSi:p
σ2

i:p


. (13)

In variance component estimation, µ is a nuisance parameter, which one typically

integrates out of the likelihood function. Hence, the expression in Equation (13) reduces to

(
σ2

X

)− 1
2

 ISSp + SSi:p

σ2
p

− P
2 −1

SSi:p

σ2
i:p

−
P(I−1)

2 −1

× e

− 1
2

 SSp
Iσ2

p+σ2
i:p

+
SSi:p
2σ2

i:p


. (14)

The complete likelihood is the product of the singleton likelihoods, across persons and

items. That is,

L(σ2
p, σ

2
i:p|data) =

P∏
p=1

I∏
i=1

L(σ2
p, σ

2
i:p|Xi:p,SSp,SSi:p, νp, νi:p). (15)

Under ML estimation, one can show that the variance components are given by:

σ̂2
p,ML =

P
P−1 MSp −MSi:p

I
, and σ̂2

i:p,ML = MSi:p (Searle,1997). (16)

Figure 1 displays likelihood functions for nine of the 81 simulation conditions.

Bayesian Approaches. Bayesian analysis, as mentioned in the introduction,

combines the likelihood with a distribution that reflects one’s belief about the true nature

of the variance components estimates. Specifically, prior distributions for variance

components should have support on the set of nonnegative real values. EMS and ML

estimates do not have such distributional constraints, and it is from this lack of constraints

that inadmissible estimates arise.

Ideally, the choice of prior distribution should be invariant to the resulting posterior

distribution. Three prior distributions, all of which assume independent variance
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components, will be compared to assess the sensitivity of the prior to inference. These

priors, are discussed below.

Each of the priors used in this study take the form of an inverse-gamma prior,

Γ−1(σ2;α, β), takes the form

p(σ2|α, β) ∝
(
SS
σ2

)−(α+1)

e−β
SS
σ2 , . (17)

The likelihood takes the form of an χ−2 distribution, which is a special case of the Γ−1

distribution. Letting ν denote the degrees of freedom, the χ−2(σ2, ν) distribution is

equivalent to the Γ−1( ν2 ,
1
2 ) distribution. Hence, the posterior of an inverse-chi-squared

distribution, combined with an inverse-gamma prior, is also an inverse-gamma distribution:

p(σ2
p, σ

2
i:p|data) ∝

SSp

σ2
p

− αp+2
2

SSi:p

σ2
i:p

−
αi:p+2

2

e

 − 1
2 SSp+(βp+1/2)

σ2
p

−
1
2 SSi:p+(βi:p+1/2)

Iσ2
p+σ2

i:p


. (18)

With some work, one can show that the MAP estimates are

σ̂2
p,Γ−1 = SSp

βp + 1
2

νp + 1
, and σ̂2

i:p,Γ−1 = SSi:p
βi:p + 1

2

νi:p + 1
where (19)

νp = αp +
P − 1

2
, and νi:p = αi:p +

P(I − 1)
2

. (20)

Some choices for hyperprior parameters (α, β) include setting (α, β) = (ε, ε), for

ε = 0.001 (Spiegelhalter, Thomas, Best, & Lunn, 2004; Browne & Draper, 2006), and

(α, β) = (−2, 0) (Gelman et al., 2003). The choice (α, β) = (−1, 0) is equivalent to a uniform

prior on the interval (0, 1
ε ) (Browne & Draper, 2006). Lastly, the choice (α, β) = (1, 0) is

equivalent to a posterior based on a Jeffreys’ prior, p(σ2
p, σ

2
i:p) ∝ (Iσ2

p + σ2
i:p)−1(σ2

i:p)−1 (Box

& Tiao, 1973).

Standardization of Sums of Squares. Even though the generating parameters, σ2
p

and σ2
i:p, are constrained such that σ2

X = 100, this constraint does not guarantee that (the

observed score variance) σ̂2
T = 100. In order to ensure comparability across replications in
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each condition, the sums of squares are standardized such that

SS∗p + SS∗i:p = (PI − 1)σ2
X , where (21)

SS∗p and SS∗i:p denote the standardized sums of squares,

SS∗p = SSp
(PI − 1)σ2

X

SST
, and SS∗i:p = SSi:p

(PI − 1)σ2
X

SST
. (22)

Measures of Bias and Standard Error. The ML estimate for error, σ̂2
i:p,ML, like the

EMS estimators, is unbiased. This is not the case, though for the corresponding estimate

for persons, σ̂2
p,ML. The expected value of this estimate is

E
(
σ̂2

p,ML

)
= E

(
P − 1

P
MSp −MSi:p

)
=

P − 1
P

(
Iσ2

p + σ2
i:p

)
− σ2

i:p

=
IP − 1

P
σ2

p −
1
P
σ2

i:p

Hence, the bias associated with σ̂2
p,ML is

BIASp,ML =
IP − I − P

P
σ2

p −
1
P
σ2

i:p. (23)

With a similar argument, one can show that, the MAP variance component

estimates with the inverse-gamma prior are biased:

E(σ2
p) =

βp + 1
2

νp + 1
E(SSp) (24)

=
βp + 1

2

νp + 1
(P − 1)(Iσ2

p + σ2
i:p) (25)

E(σ2
i:p) =

βi:p + 1
2

νi:p + 1
E(SSi:p) (26)

=
βi:p + 1

2

νi:p + 1
P(I − 1)σ2

i:p (27)

Thus,

BIASp,Γ−1 =
βp + 1

2

νp + 1
(P − 1)(Iσ2

p + σ2
i:p) − σ2

p , and (28)

BIASi:p,Γ−1 =
βi:p + 1

2

νi:p + 1
P(I − 1)σ2

i:p − σ
2
i:p . (29)
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Equations (23) through (29) are related to sample size. For large numbers of persons, the

ML estimate becomes less biased. In the i : p nested model σ̂2
p,Γ−1 and σ̂2

i:p,Γ−1 will be

unbiased, respectively, for large samples of persons and for large samples of items within

persons.

Combining the frequentist and Bayesian approaches, this study will estimate, for

both balanced and unbalanced data, variance components using the following models:

1. EMS, Equation (11)

2. Federer-corrected EMS, Equation (12)

3. ML, Equation (16)

4. Bayes, with SSp

σ2
p
∼ Γ−1(−2, 0), and SSi:p

σ2
i:p
∼ Γ−1(−2, 0), (IG4; Browne & Draper, 2006).

5. Bayes, with SSp

σ2
p
∼ Γ−1(0, 0), and SSi:p

σ2
i:p
∼ Γ−1(0, 0), (IG5; Spiegelhalter et al., 2004).

6. Bayes, with SSp

σ2
p
∼ Γ−1(1, 0), and SSi:p

σ2
i:p
∼ Γ−1(1, 0), (Box & Tiao, 1973).

Numerical measures of bias and accuracy, in terms of recovering the generating

variance components, will be obtained for each method. In order to remove effects of

magnitude across conditions, relative measures of bias and standard error are computed:

Let P and P̂ denote respectively the true parameter (σ2
p, σ

2
i:p) and its estimate (σ̂2

p, σ̂
2
i:p),

and let D denote the deviation

D =
P̂ − P
||P||

, (30)

where ||P|| denotes the norm of P. Then, the root mean square relative bias (RMSRB) and

error (RMSRE) are defined, as

RMSRB =
√
||E(D)|| , and RMSRE =

√
E(||D||) , (31)

where E(·) denotes the expectation operator.
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Results

Balanced Data

Figures 2 and 3 display the overall RMSRB and RMSRE for each of the six

estimation methods in the balanced data cases. The figures suggest no noticeable

differences among the methods, when considered across all conditions, but

Insert Figures 2 and 3 here.

suggest a strong similarity between the measures of bias and error. Figure 4 displays the

RMSRB and RMSRE measures across all levels of persons, items, and estimation

methods (the scale of the plot permits a comparison with corresponding values from

unbalanced data). One may find interesting the strong relationship between these values

for large magnitudes (i.e., above 0.9).

Insert Figure 4 here.

The pearson correlation of RMSB and RMSE is 0.96. Hence, further discussion about

balanced data will focus only on bias, since the results will be similar to those for error.

Figure 5 shows the RMSRB for the six estimation methods for balanced data. The

figures suggests a gradually increasing relationship between numbers of persons and

bias. No noticeable differences were apparent across the methods of estimation.

Insert Figure 5 here.

With respect to numbers of items for balanced data, as shown in Figure 6, bias tended to

decrease with increasing numbers of items. Again, no noticeable differences among

estimation methods were present.

Insert Figure 6 here.
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The relationship between test reliability with bias, as shown in Figure 7, was similar to

those previously discussed. Bias decreased as test reliability improved. No noticeable

differences among estimation methods were found.

Insert Figure 7 here.

Unbalanced Data

Figures 8 and 9 display the overall RMSRB and RMSRE for each of the six

estimation methods in the balanced data cases. Unlike the case with balanced data,

noticeable differences in the distributions of bias and error were present based on

estimation method. Across all conditions, the least biased methods were IG5, Box-Tiao,

and EMS. The distributions of bias for the Box-Tiao and EMS methods were more similar

in the sense that they tended towards slightly larger values of bias than did the distribution

for IG5.

Insert Figures 8 and 9 here.

For the unbalanced data conditions, the magnitude of RMSRE values tended to be

greater than those of RMSRB values. Some estimation methods, the IG5 and Box-Tiao

methods in particular, had far less variability in measures of error relative to the other

methods. There was a strong linear (and perhaps minimally curvilinear) relationship

between the measures of bias and error, as shown in Figure 10. One remarkable

difference between the scatterplots for the balanced and unbalanced conditions was the

spread of the values for bias and error. There was more variability in these measures for

unbalanced data relative to those for balanced data, a fact that one may notice from the

histograms in Figures 8 and 9.

Insert Figure 10 here.
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Again, because of the strong relationship between measures of bias and error (r = 0.94),

further analysis will only address the former.

Figure 11 displays bias by estimation method, as a function of effective test length.

The jaggedness of the relationship stems from the difference between balanced and

mildly unbalanced designs. For example, a design in which four people respectively

responded to 10, 10, 30, and 30 items had an effective test length of 28, and had a higher

mean bias than did a balanced design where four persons each responded to 25 items.

Smaller values of effective test length tended to correspond to balanced designs. The

most unbalanced design corresponded to two persons, responding to 10 and 90 items,

respectively. Across the range of effective test lengths, the Box-Tiao and IG5 methods

tended to produce the least amount of bias.

Insert Figures 11 here.

When compared with balanced data designs, test reliabilities told a different story

when explaining bias. ML was the most biased method, producing on mean RMSRB

values above 1.0. Conversely, the IG5 method was the best with mean RMSRB values

around 0.7. With this method, the RMSRB was lowest for tests with a reliability of 0.8, and

slightly increased for tests with reliabilities of 0.9. Box-Tiao estimates tended to follow IG5

estimates for unreliable tests (i.e., tests with reliabilities below 0.5), but became more

biased as reliability increased.

Insert Figures 12 here.

Conclusion and Discussion

Among the balanced data simulations, each of the estimation methods studied

produced comparable measures of root mean squared relative bias and error. The

distributions of bias and error were correlated highly enough that one could focus only on
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analyses of bias without loss of generality. Bias tended to increase with increasing

numbers of persons, but decreased with increasing numbers of items. This result is

consistent with the existing literature, at least in the sense that having more items permits

more informative inferences on a person’ score (which is the dependent variable in any

generalizability study).

Examination of the relationship between bias and test reliability suggested that

Bayesian methods produced less biased variance component estimates for tests of any

practical value (i.e., with reliabilities above 0.6). Federer’s corrected EMS method was the

least biased method of estimation for tests with reliabilities below 0.6.

Unlike the case with balanced data, there were marked differences in the

distributions of bias for each of the estimation methods for unbalanced data. The

Γ−1(−2, 0) prior did not perform as well as expected, demonstrating relatively large bias,

and was not even able to estimate measures of bias in some cases. The Γ−1(0, 0) prior

performed as well as the Box-Tiao prior in most cases, but produced less biased

estimates in cases of marked lack of balance among items per person, as well as in

cases with highly reliable tests.

Research in this area is far from sufficient. The following comments suggest

directions for future work: The assumption that person and error effects are normally

distributed arises mostly out of convenience. Under conditions of normality, variances

follow inverse chi-squared distributions. More flexible models deserve consideration, at

least to determine how realistic the normality assumption is. Bayesian nonparametric

statistics (Ghosh & Ramamoorthi, 2003) allows one to incorporate uncertainty in the

underlying distribution of the random effects.

The assumption of independent variance components is invalid in a fixed-variance

study such as this one, and may be invalid in other studies. Some researchers,

particularly in the animal science literature (e.g., Van Tassell & Van Vleck, 1996; Noguera,
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Varona, Babot, & Estany, 2002; Stock, Distl, & Hoeschele, 2007), have used

inverse-Wishart priors to reflect possible dependence among components. Future

research may formulate a multivariate inverse-gamma distribution, which would be useful

in variance component studies.

This study only examined differences among estimation methods in a one-at-time

manner. Interactions, for example, between numbers of persons and items, may show

differences among estimation methods.

Effective test length, at least as used in this study, was not very informative for

discerning the relationship between lack of balance and relative bias. Future work should

explore alternative measures of deviation from balanced designs.

Finally, it is important to consider the reason for which one chooses to estimate

variance components. Interest in partitioning the variability of person scores, perhaps in

the spirit of pre-work for decision studies, is certainly a valid reason. However, when the

purpose is to estimate test reliability, other approaches may be more appropriate. Test

reliability is a ratio of variance components, and ratio estimators do not always possess

desirable characteristics. One approach around this is to derive a likelihood and posterior

distribution directly in terms of reliability (Spiegelhalter, 2001), thus avoiding the need to

estimate variance components.
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Appendix

To show the relationship between variance components and test reliability for tests

with a fixed-variance, begin with an expansion of terms in the relationship between

person, error, and total sums of squares:

SSp + SSi:p = SST (32)

(P − 1)MSp + P(I − 1)MSi:p = (IP − 1)σ2
X

(P − 1)(Iσ2
p + σ2

i:p) + P(I − 1)σ2
i:p = (PI − 1)σ2

X

I(P − 1)σ2
p + [(P − 1) + P(I − 1)]σ2

i:p = (IP − 1)σ2
X

I(P − 1)σ2
p + [(P − 1) + P(I − 1)]σ2

i:p = (IP − 1)σ2
X (33)

From Equation (33), one can substitute

σ2
i:p =

1 − ρ
ρ

σ2
p (34)

to show that

I(P − 1)σ2
p + (IP + P − 2)

1 − ρ
ρ

σ2
p = (IP − 1)σ2

X[
I(P − 1) + (IP + P − 2)

1 − ρ
ρ

]
σ2

p = (IP − 1) , σ2
X (35)

from which it follows that

σ2
p =

(IP − 1)

I(P − 1) + (IP + P − 2) 1−ρ
ρ

σ2
X . (36)

Solving for σ2
i:p requires substituting

σ2
p =

ρ

1 − ρ
σ2

i:p (37)

in Equation (33), which results in

I(P − 1)
ρ

1 − ρ
σ2

i:p + (IP + P − 2)σ2
i:p = (IP − 1)σ2

X[
I(P − 1)

ρ

1 − ρ
+ (IP + P − 2)

]
σ2

i:p = (IP − 1)σ2
X

σ2
i:p =

(IP − 1)
I(P − 1) ρ

1−ρ + (IP + P − 2)
σ2

X . (38)
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Table 1

Expected mean squares for the one-way ANOVA model.

Source d.f. E.M.S.

Persons νp = P − 1 E(MSp) = σ2
i:p + Kσ2

p

Error νpk = P(K − 1) E(MSi:p) = σ2
i:p
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Table 2

True variance components for generating random values for P = 25.

P I ρ σ2
p σ2

i:p P I ρ σ2
p σ2

i:p P I ρ σ2
p σ2

i:p

25 10 0.10 9.23 83.09 25 50 0.10 9.87 88.81 25 100 0.10 9.95 89.58

25 10 0.20 18.69 74.77 25 50 0.20 19.85 79.40 25 100 0.20 20.00 80.02

25 10 0.30 28.39 66.25 25 50 0.30 29.95 69.88 25 100 0.30 30.16 70.36

25 10 0.40 38.34 57.51 25 50 0.40 40.17 60.25 25 100 0.40 40.41 60.61

25 10 0.50 48.54 48.54 25 50 0.50 50.51 50.51 25 100 0.50 50.76 50.76

25 10 0.60 59.00 39.34 25 50 0.60 60.97 40.64 25 100 0.60 61.22 40.81

25 10 0.70 69.75 29.89 25 50 0.70 71.55 30.67 25 100 0.70 71.78 30.76

25 10 0.80 80.78 20.19 25 50 0.80 82.27 20.57 25 100 0.80 82.45 20.61

25 10 0.85 86.41 15.25 25 50 0.85 87.67 15.47 25 100 0.85 87.83 15.50

25 10 0.90 92.11 10.23 25 50 0.90 93.11 10.35 25 100 0.90 93.23 10.36

25 10 0.95 97.89 5.15 25 50 0.95 98.58 5.19 25 100 0.95 98.67 5.19
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Table 3

True variance components for generating random values for P = 100.

P I ρ σ2
p σ2

i:p P I ρ σ2
p σ2

i:p P I ρ σ2
p σ2

i:p

100 10 0.10 9.19 82.70 100 50 0.10 9.83 88.51 100 100 0.10 9.92 89.29

100 10 0.20 18.56 74.25 100 50 0.20 19.73 78.90 100 100 0.20 19.88 79.53

100 10 0.30 28.13 65.62 100 50 0.30 29.68 69.24 100 100 0.30 29.88 69.72

100 10 0.40 37.88 56.83 100 50 0.40 39.68 59.53 100 100 0.40 39.92 59.88

100 10 0.50 47.84 47.84 100 50 0.50 49.75 49.75 100 100 0.50 50.00 50.00

100 10 0.60 58.01 38.68 100 50 0.60 59.88 39.92 100 100 0.60 60.12 40.08

100 10 0.70 68.40 29.31 100 50 0.70 70.06 30.03 100 100 0.70 70.28 30.12

100 10 0.80 79.00 19.75 100 50 0.80 80.31 20.08 100 100 0.80 80.48 20.12

100 10 0.85 84.39 14.89 100 50 0.85 85.46 15.08 100 100 0.85 85.59 15.10

100 10 0.90 89.84 9.98 100 50 0.90 90.62 10.07 100 100 0.90 90.72 10.08

100 10 0.95 95.34 5.02 100 50 0.95 95.80 5.04 100 100 0.95 95.85 5.04
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Table 4

True variance components for generating random values for P = 1000.

P I ρ σ2
p σ2

i:p P I ρ σ2
p σ2

i:p P I ρ σ2
p σ2

i:p

1000 10 0.10 9.18 82.58 1000 50 0.10 9.82 88.42 1000 100 0.10 9.91 89.21

1000 10 0.20 18.52 74.09 1000 50 0.20 19.69 78.76 1000 100 0.20 19.85 79.38

1000 10 0.30 28.05 65.44 1000 50 0.30 29.59 69.05 1000 100 0.30 29.80 69.53

1000 10 0.40 37.75 56.63 1000 50 0.40 39.54 59.31 1000 100 0.40 39.78 59.67

1000 10 0.50 47.64 47.64 1000 50 0.50 49.53 49.53 1000 100 0.50 49.78 49.78

1000 10 0.60 57.72 38.48 1000 50 0.60 59.56 39.71 1000 100 0.60 59.80 39.86

1000 10 0.70 68.00 29.14 1000 50 0.70 69.63 29.84 1000 100 0.70 69.84 29.93

1000 10 0.80 78.49 19.62 1000 50 0.80 79.74 19.94 1000 100 0.80 79.90 19.98

1000 10 0.85 83.81 14.79 1000 50 0.85 84.82 14.97 1000 100 0.85 84.94 14.99

1000 10 0.90 89.18 9.91 1000 50 0.90 89.90 9.99 1000 100 0.90 89.99 10.00

1000 10 0.95 94.61 4.98 1000 50 0.95 94.99 5.00 1000 100 0.95 95.04 5.00
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Table 5

Proportions of and variance components for two unbalanced groups.

N1 N2 Ieff ρ σ2
p σ2

i:p

10 90 82 0.1 10.6 95.3

10 90 82 0.2 22.3 89.3

10 90 82 0.3 35.4 82.7

10 90 82 0.4 50.2 75.2

10 90 82 0.5 66.8 66.8

10 90 82 0.6 85.8 57.2

10 90 82 0.7 107.6 46.1

10 90 82 0.8 133.1 33.3

10 90 82 0.9 163 18.1

50 50 50 0.1 10.6 95.6

50 50 50 0.2 22.4 89.6

50 50 50 0.3 35.5 82.9

50 50 50 0.4 50.3 75.4

50 50 50 0.5 66.9 66.9

50 50 50 0.6 85.8 57.2

50 50 50 0.7 107.6 46.1

50 50 50 0.8 132.9 33.2

50 50 50 0.9 162.6 18.1
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Table 6

Proportions of and variance components for three unbalanced groups.

N1 N2 N3 Ieff ρ σ2
p σ2

i:p

10 45 45 41.5 0.1 10.4 93.8

10 45 45 41.5 0.2 21.6 86.2

10 45 45 41.5 0.3 33.5 78.1

10 45 45 41.5 0.4 46.3 69.4

10 45 45 41.5 0.5 60.1 60.1

10 45 45 41.5 0.6 75.0 50.0

10 45 45 41.5 0.7 91.1 39.1

10 45 45 41.5 0.8 108.7 27.2

10 45 45 41.5 0.9 127.8 14.2

10 10 80 66.0 0.1 10.4 93.5

10 10 80 66.0 0.2 21.5 86.0

10 10 80 66.0 0.3 33.4 78.0

10 10 80 66.0 0.4 46.2 69.4

10 10 80 66.0 0.5 60.1 60.1

10 10 80 66.0 0.6 75.0 50.0

10 10 80 66.0 0.7 91.2 39.1

10 10 80 66.0 0.8 108.8 27.2

10 10 80 66.0 0.9 128.1 14.2

33 33 34 33.3 0.1 10.4 93.9

33 33 34 33.3 0.2 21.6 86.3

33 33 34 33.3 0.3 33.5 78.2

33 33 34 33.3 0.4 46.3 69.5

33 33 34 33.3 0.5 60.1 60.1

33 33 34 33.3 0.6 75.0 50.0

33 33 34 33.3 0.7 91.1 39.0

33 33 34 33.3 0.8 108.6 27.1

33 33 34 33.3 0.9 127.7 14.2
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Table 7

Proportions of and variance components for four unbalanced groups.

N1 N2 N3 N4 Ieff ρ σ2
p σ2

i:p N1 N2 N3 N4 Ieff ρ σ2
p σ2

i:p

25 25 25 25 25 0.1 10.3 93.1 10 10 40 40 34 0.1 10.3 92.9

25 25 25 25 25 0.2 21.2 84.8 10 10 40 40 34 0.2 21.2 84.6

25 25 25 25 25 0.3 32.6 76.1 10 10 40 40 34 0.3 32.6 76.0

25 25 25 25 25 0.4 44.6 66.9 10 10 40 40 34 0.4 44.6 66.8

25 25 25 25 25 0.5 57.2 57.2 10 10 40 40 34 0.5 57.2 57.2

25 25 25 25 25 0.6 70.5 47.0 10 10 40 40 34 0.6 70.6 47.0

25 25 25 25 25 0.7 84.6 36.3 10 10 40 40 34 0.7 84.7 36.3

25 25 25 25 25 0.8 99.5 24.9 10 10 40 40 34 0.8 99.6 24.9

25 25 25 25 25 0.9 115.3 12.8 10 10 40 40 34 0.9 115.5 12. 8

10 30 30 30 28 0.1 10.3 93.0 10 10 10 70 52 0.1 10.3 92.7

10 30 30 30 28 0.2 21.2 84.7 10 10 10 70 52 0.2 21.1 84.5

10 30 30 30 28 0.3 32.6 76.0 10 10 10 70 52 0.3 32.5 75.9

10 30 30 30 28 0.4 44.6 66.9 10 10 10 70 52 0.4 44.5 66.8

10 30 30 30 28 0.5 57.2 57.2 10 10 10 70 52 0.5 57.2 57.2

10 30 30 30 28 0.6 70.6 47.0 10 10 10 70 52 0.6 70.6 47.0

10 30 30 30 28 0.7 84.6 36.3 10 10 10 70 52 0.7 84.7 36.3

10 30 30 30 28 0.8 99.6 24.9 10 10 10 70 52 0.8 99.8 24.9

10 30 30 30 28 0.9 115.4 12.8 10 10 10 70 52 0.9 115.7 12.9
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Figure Captions

Figure 1. Likelihood functions based on generating variance components for

P = {25, 100, 1000}, I = {10, 50, 100}, and ρ = {0.10,0.5,0.9}.

Figure 2. RMSB for balanced data, by estimation method.

Figure 3. RMSE for balanced data, by estimation method.

Figure 4. RMSB vs. RMSE for balanced data, across all conditions.

Figure 5. RMSB by estimation method, as a function of numbers of persons.

Figure 6. RMSB by estimation method, as a function of numbers of items.

Figure 7. RMSB by estimation method, as a function of test reliability.

Figure 8. RMSB for unbalanced data, by estimation method.

Figure 9. RMSE for unbalanced data, by estimation method.

Figure 10. RMSB vs. RMSE, for unbalanced data, by estimation method.

Figure 11. RMSB, for unbalanced data, by estimation method, as function of effective test

length.

Figure 12. RMSB, for unbalanced data, by estimation method, as function of test reliability.
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